GAP-43 amino terminal peptides modulate growth cone morphology and neurite outgrowth.
نویسندگان
چکیده
The neuronal growth-associated protein GAP-43 is expressed maximally during development and regeneration, and is enriched at the cytosolic surface of the growth cone membrane. GAP-43 can activate the GTP-binding protein G(o) which is also a major component of the growth cone membrane. These findings have led to the hypothesis that GAP-43 might modulate neurite outgrowth by altering G-protein activity. Here we define the sequence requirements for GAP-43 amino terminal peptide stimulation of G(o), and test these peptides as potential modulators of neurite outgrowth. The first 10 amino acids of GAP-43, Met-Leu-Cys-Cys-Met-Arg-Arg-Thr-Lys-Gln, stimulate G(o). Substitutions at particular residues reveal that cys3, cys4, arg6, and lys9 are critical, but arg7 is not. Both the GAP-43(1-10) peptide and the G-protein-activating peptide mastoparan induce growth cone collapse and inhibit neurite extension from embryonic chick dorsal root ganglion and retinal neurons. This is likely to be mediated by G-proteins: pertussis toxin blocks the inhibition, and mutant peptides that do not activate G(o) do not alter outgrowth. In contrast to the case with embryonic chick dorsal root ganglion cells, neurite outgrowth from N1E-115 neuroblastoma cells is stimulated by GAP-43(1-10). This is probably also a G-protein-mediated event because it is blocked by pertussis toxin, because the sequence requirements match those for G(o) stimulation, and because mastoparan stimulates outgrowth from these cells. The longer GAP-43(1-25) peptide does not alter neurite outgrowth unless the cells are permeabilized, suggesting an intracellular site of action. These data identify a novel set of compounds that modulate neurite outgrowth, and also support the notion that GAP-43 can alter neurite extension by modulating pertussis toxin-sensitive G-protein activity in the growth cone.
منابع مشابه
Depletion of 43-kD growth-associated protein in primary sensory neurons leads to diminished formation and spreading of growth cones
The 43-kD growth-associated protein (GAP-43) is a major protein kinase C (PKC) substrate of growing axons, and of developing nerve terminals and glial cells. It is a highly hydrophilic protein associated with the cortical cytoskeleton and membranes. In neurons it is rapidly transported from the cell body to growth cones and nerve terminals, where it accumulates. To define the role of GAP-43 in ...
متن کاملAbsence of persistent spreading, branching, and adhesion in GAP-43- depleted growth cones
The growth-associated protein GAP-43 is a major protein kinase C substrate of growth cones and developing nerve terminals. In the growth cone, it accumulates near the plasma membrane, where it associates with the cortical cytoskeleton and membranes. The role of GAP-43 in neurite outgrowth is not yet clear, but recent findings suggest that it may be a crucial competence factor in this process. T...
متن کاملNeurite outgrowth stimulated by neural cell adhesion molecules requires growth-associated protein-43 (GAP-43) function and is associated with GAP-43 phosphorylation in growth cones.
The mechanisms whereby cell adhesion molecules (CAMs) promote axonal growth and synaptic plasticity are poorly understood. Here we show that the neurite outgrowth stimulated by NCAM-mediated fibroblast growth factor (FGF) receptor activation in cerebellar granule cells is associated with increased GAP-43 phosphorylation on serine-41. In contrast, neither NCAM nor FGF was able to stimulate neuri...
متن کاملLigand-induced growth cone collapse: amplification and blockade by variant GAP-43 peptides.
Growth cones are powerful amplifiers for signals from the microenvironment. Their collapse can be triggered by cell surface components of myelin and brain membranes, as well as by soluble ligands, including neurotransmitters. GAP-43 is a protein concentrated on the inner surface of the growth cone membrane. Assayed in isolation, it interacts with the heterotrimeric protein, G(o), and in oocytes...
متن کاملVaricones and Growth Cones: Two Neurite Terminals in PC12 Cells
The rat adrenal pheochromocytoma PC12 cell line is one of the traditional models for the study of neurite outgrowth and growth cone behavior. To clarify to what extent PC12 neurite terminals can be compared to neuronal growth cones, we have analyzed their morphology and protein distribution in fixed PC12 cells by immunocytochemistry. Our results show that that PC12 cells display a special kind ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 14 9 شماره
صفحات -
تاریخ انتشار 1994